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Abstract. Renormalisation-group recursion relations are used to construct equations of state 
for the critical region of the three-state Potts model with symmetry-breaking perturbations, 
to first-order in E = 4 - d.  Explicit scaling forms are obtained for the free energy and the 
longitudinal susceptibility above and below the critical point, as well as for the order- 
parameter discontinuity on the first-order phase boundary. Application to the trigonal-to- 
pseudotetragonal phase transition in SrTiO, under stress yields reasonable agreement with 
the experimental phase boundary. 

1. Introduction 

The statistical mechanics and the phase transitions of the q-state Potts model (1952) 
have already been studied for some while (Wu 1982). As a generalisation of the Ising 
model, the classical ‘spins’ on each side of a lattice can be in one of q states. In the case 
of an interaction between only nearest-neighbour sites, the interaction energy is E~ when 
two spins are in the same state and 

The three-state Potts model is of particular interest, in view of the physical realis- 
ations described by this model. Indeed, it has been shown to describe, among other 
things: (i) the two-dimensional lattice-gas transition of He  and other atoms adsorbed on 
Grafoil (Alexander 1975, Domany and Riedel 1978); (ii) the magnetic transition in a 
cubic ferromagnet with easy axes along the cube axes when placed in a magnetic field 
along the [l, 1, 11 diagonal (Mukamel et a1 1976); (iii) the trigonal-to-pseudotetragonal 
structural phase transition in perovskites like SrTi03 under stress along the [ l ,  1, 13 
direction (Aharony et a1 1977). 

Symmetry-breaking perturbations are crucial in determining the nature of a phase 
transition (Aharony 1976). Quite detailed results concerning the equations of state for 
bicritical points in the n-vector model are now available (Nelson and Domany 1976, 
Domany et aZ1977, Amit 1984), while little is known about the Potts model. 

The continuum version of the three-state Potts model in an external field has both 
critical and tricritical points (Straley and Fisher 1973, Blankschtein and Aharony 1980) 
which are of interest. Blankschtein and Aharony (1981) suggested that the model 
t Present address: Institute for Physical Science and Technology, The University of Maryland, College Park, 
MA 20742, USA. 

> when two spins are in different states. 
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with linear and quadratic symmetry-breaking terms should describe the trigonal-to- 
pseudotetragonal phase transition of uniaxially stressed SrTi03 with weak off-diagonal 
stress along the [l + 6, 1 + 6, 1 - 261 direction. Actually, the Hubbard-Stratonovich 
(1959, 1957) transformation on the discrete spin Hamiltonian for the three-state Potts 
model with spin anisotropy also generates trilinear and quartic symmetry-breaking terms 
in the effective Hamiltonian 

where ro is a field-independent term, while higher powers of the field are neglected. 
The trilinear and quartic symmetry-breaking terms have been shown in recent 

works to be relevant to mean-field theory (Fontanari and Theumann 1986) and to 
renormalisation-group (RG) calculations in d = 4 - E dimensions (Barbosa and Theu- 
mann 1988a, referred to asI). Indeed, the amplitude ratios t,/t,, h,/h,andM,/M,, between 
the reduced temperature t ,  external field h and magnetisation M of the underlying X Y  
model at the critical and tricritical points of the Potts model were found to be non- 
universal in I, contrary to earlier conclusions by Blankschtein and Aharony (1980). The 
universality of these ratios is relevant to the ratio 6,/6,for the phase transition in SrTi03. 

Since non-universal ratios are of little use, it is of interest to determine further 
thermodynamic properties for the three-state Potts model with symmetry-breaking 
perturbations. 

The importance of scaling forms for equations of state has been recognised for some 
time (Widom 1965, Domb and Hunter 1965). An explicit scaling form for the free energy 
for the three-state Potts model in an external field has been obtained by Rudnick (1975) 
to low order in E = 4 - d. However, detailed RG (Wilson and Kogut 1974, Fisher 1974, 
BrCzinetaZ 1976) results with further symmetry-breaking perturbations are not available. 

In the present paper we calculate explicit RG scaling forms, to first order in E = 4 - d,  
for the free energy and the equations of state (the magnetisation and the longitudinal 
susceptibility) for the three-state Potts model with symmetry-breaking perturbations. 
We also present renormalisation-group fluctuation corrections to the mean-field phase 
diagram with application to the Potts-model transition in SrTi03. 

A typical phase diagram for the three-state Potts model (Blankschtein and Aharony 
1980, Fontanari and Theumann 1986), shown in figure 1, has three phase transitions 
involving one disordered and two ordered phases. In phase I, q1 # 0 and q2 = 0 but 
q1 + 0 as h l  -+ 0; in phase 11, ql  # 0 and q2 = 0 but q ++ 0 as h l  + 0; in phase 111, 
q1 # 0 and q 2  # 0. The discontinuity in the order parameter ql  along the first-order 
transition 1-11 disappears at the critical point (CP) with a common non-zero magnetisation 
given by the thermal average (q JC. On the other hand, the first-order transition 1-111 
changes over into a line of critical points at a tricritical point (TCP). For the reasons 
discussed below, we restrict the paper to the critical region of the phase transition 1-11, 
and to the corresponding transition for SrTiO,. 

We make extensive use of the solutions to the RG recursion relations that were 
obtained in I. After making the usual shift q1 = @ 1  + M ,  while q 2  = Q2, in which 
G 1  and @ *  are the fluctuating parts with thermal averages (G1) = ( @ J  = 0 that are 
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Figure 1. Typical mean-field phase diagram for the 
three-state Potts model with symmetry-breaking 
perturbations in terms of dimensionless tem- 
perature and field variables, R = (4u, /9w2)r  and 
H = (16u:/27w3)hl, respectively. The solid lines 
represent first-order transitionsending at a critical 

I1 \? 0.5 R point (CP) or at a tricritical point (TCP) and the 
broken line indicates a second-order transition. 
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appropriate for a study of the phase transition 1-11, we obtain the new field-independent 
parameter 

f o  = Y O  + +JIM' + w , M 3  + ( ~ 1  + u,)M4 - hlM (1.2) 

in addition to the field-dependent effective Hamiltonian of equation (2.2) of I from 
which all the recursion relations used in I were derived. A study of the equation of state 
also requires a recursion relation for io, which will be derived below. 

As in I we write the RG rescaling parameter as b = e' and denote by U = g,, i, = g,, 
y = g,, and z = g u 2  the trilinear and quartic symmetry-breaking parameters used in I. 

The outline of the paper is as follows. In § 2 we obtain scaling forms for the free 
energy and the longitudinal susceptibility both above and below the critical point in a 
finite field, as well as the discontinuity in the magnetisation just below the critical point. 
It is shown that, despite the trilinear and quartic symmetry-breaking terms in the 
effective Hamiltonian, the ratio x'/x- of the susceptibility above and below the critical 
point is universal. The fluctuation corrections to the phase diagram in SrTi03 are 
discussed in § 3 and we conclude with further remarks in § 4. 

2. Critical scaling functions 

2.1 .  Scaling ansatz 

An extended scaling ansatz (Bruce and Aharony 1975, Fisher and Jasnow 1980) for the 
singular part of the free energy may be generalised in the form 

F(t,  w ,  {s}, h , )  = b-dF(bAit, b'ww, {b*~s} ,  b'hhl) (2.1) 

where t = ( T  - TC)/Tc is the reduced critical temperature of the X Y  model, b is a rescale 
factor, 

and the basic assumption is that t ,  w, {s}, hl are all small. The trilinear coupling w and 
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the symmetry-breaking perturbations {s} describe deviations from isotropic XY-model 
behaviour in an external field, given by w = {s} = 0. 

In place of the usual choice for b, as the temperature-dependent correlation length 
6 -- t-”, which yields an extended scaling form appropriate for the study of crossover 
(Fisher 1967) from isotropicXY-model behaviour, we take b = 5 - w - ” ~ .  This identifies 
Y ,  = u / q w ,  and yields 

F(t, w ,  {s}, h , )  = w(2-a)/W((tw-1/p., {sw-~s/p:w}, h , w - * / ~ w )  (2.3) 

appropriate for Potts-model asymptotic behaviour, where q, and rpps are the crossover 
exponents of the isotropicXY-model to perturbations in wand in {s}, respectively. These 
may still be used here as long as tw-l/Pw and S W - ~ ’ S ’ ~ W ,  for each s ,  are not smaller than 
O(1). The usual exponents for the XY-model are known at least to order (Wilson 
1972, BrCzin et a1 1973, Rudnick 1975) while the new exponents 

9 , , ,=$ (1 -&&)+0(&2)  9, =--2 5 & + 0 ( & 2 )  9, * = - l o &  + O(E2) (2 * 4) 

follow fromequations (2.18)-(2.21) of I andtherelationships q, = vAw7 vu = Y A ” ,  qY = 
vAY and qz = vA,. 

A similar argument can be used to write b = e‘ in a scaling form, 

(2.5) e‘ = w -u/P wy(tw -1/P w ,  {sw -P,/P w } ,  h , w -*/P w). 

Following Blankschtein and Aharony (1980), the critical region is obtained by inte- 
grating out the transverse component @2 until T2(l*) = 1 by means of the temperature 
variable T2(I) of equation (2.8) of I. This yields 

Y({Xi}) = u’/2[x1(1 - %x4) -x2 - 9 + 9 x 4  - ! # x p  (2.6) 

to zero-loop order, where 

x1 = U*tW-llvw x2 = u*g/w2 xg 3 uw-v,hw-1 

xq = (y/u*)w-PY’p’w 
x5 e (+*)w-dPw (2.7) 

are appropriate scaling variables and U *  is the fixed-point value of the symmetric quartic 
coupling. To zero-loop order they are dimensionless but their complete forms, as defined 
in (2.7) will be needed below. 

2.2. Free energy 

The free-energy density F ( X )  follows from the RG relationship (Nelson 1975, Niemeijer 
and van Leeuwen 1976, Rudnick and Nelson 1976) 

1 

F ( X )  = I dl’ e-d”GO(l’) + e-d’F(X(l)) 
0 

where the first term involves only the renormalisation with the spatial rescaling factor e‘ 
of the spin-independent part J o  in (1.2). The second term represents the contribution 
from renormalisations involving both the spatial and field rescaling factors (Wilson and 
Kogut 1974, Fisher 1974) and it is such that F [ X ( l ) ]  = 0 in the leading-order Landau 
theory. 
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The first term in (2.8) is calculated by integrating the recursion relation (Nelson 1975, 
Rudnick and Nelson 1976) 

dP,(l)/dl= ( d  - l ) io ( l )  + 1 ln[( l+ i l ( l ) ) ( l  + f 2 ( l ) ) ]  (2.9) 

which yields 

9 W y l )  

2 4) dl'e-d'Go(l') = [i( t l( l)-----)  M2( l )+w1( I )M3( l )  

(2.10) 

making use of equations (2.7) and (2.8) of I, where h1 is given by equation (2.10) of I 
and where Fo(I) contains a singular part only in the XY-model limit, in addition to a 
regular part. 

The calculation of F [ X ( l ) ]  in the second term of (2.8) yields the singular contribution 

in the Potts-model critical region, plus terms that become singular only in the XY-model 
limit. Here, U? = ~ / 3 6  is the fixed-point coupling for the Ising model. A similar result 
appears in n-vector model calculations (Rudnick and Nelson 1976). 

Collecting equations (2.10) and (2.11), the singular part of the free-energy density 
in the Potts-model critical region is given by 

F(X)sing = e-d%[tl(l) - ! i ( ~ ~ ( z ) / ~ ( l ) ) ] M ~ ( l )  + wi(l)M3(l) 

+ (ul(l)  + - & ( ~ ) M ( L ) )  + e - d i ~ ( ~ ( z ) ) s i n g .  (2.12) 

The singularity of each term in the first part of this equation lies in the dependence on 
M ( l )  which indeed is singular on the coexistence curve, as will be seen below. 

Next, we make a shift in the magnetisation, 

M ( l )  = M,( l )  + m(l). (2.13) 

where M,(l) is the value at the critical point given by 

~ , ( l )  = - wl(W4(~1(Z)  + u2(O) (2.14) 

which follows from weff 
parameter. The singular part of the free-energy density becomes now 

aI(l*) = 0 in equation (2.3) of 1. Then m(l) acts as an order 

F(2)si.g = e-d'[iteff(l)m2(l) + (ul(l) + u2(l))m4(l)  

- hefr(l)m(l>I + e-diF(x(l))sing (2.15) 

plus terms which are not singular in the Potts-model critical region, and where 
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are effective temperature and external field variables, with the latter following from 
(@J = 0, in which 

The equation heff(l) = 0 has a solution m(l) = 0 if teff(l) > 0. In analogy to a second- 
order transition, we refer to this in what follows as the ‘disordered’ phase. There are 
further solutions 

m(l) = * N[Iteff(l)I/(U1(O +~2( l ) ) I [1-6(~1( l )  +uZ(l)) 1n121eff(l)II}1’2 (2.19) 

if teff(l) < 0, which we refer to as the ‘ordered’ phase. The separation between the two 
types of solutions takes place at the critical point where teff = 0 = heff. When heff = 0 and 
teff < 0 the coexistence curve is obtained between 

phase I M ( l )  = M,(4 + Im(l>l (2.20a) 

and 

phase11 M ( l )  = M,(l) - im(l)l. (2.20b) 

Thus, 2lm(l)I is the discontinuity in the magnetisation across the first-order phase 
boundary 1-11. Note that the equality of the free-energy density on both sides of this 
boundary follows immediately from (2.15) when heff(l) = 0. 

2.3. Scaling forms 

We consider next the scaling forms for the singular part of the free-energy density when 
heff(l) = 0, in the ordered and disordered phases. In the disordered phase, where m(l) = 
0, (2.18) becomes 

when use is made of (2.5) and (2.6) in the solutions to the RG equations discussed in I, 
and where 

x = x l ( l  + &e In Y({x j } ) )u - ’  (2.22) 

X, I [ y - x 2  + - Yxj ( l  + &~lnY({x~})) ]u- ’  (2.23) 

i4 = x4( l  + 4s In Y({x,})) (2.24) 

and 

A1({xi}) = &[1n(3-2x2 + $&x4 - Uxj)u-’ + % - Vx2 - H x 4  + 3%xj]. (2.25) 

The scaling variables xi are those defined in (2.7). Note that the critical point is 
approached as x + x,. 
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The singular part of the free-energy density in the disordered phase, that follows 
from (2.11) and (2.15), has then the scaling form 

(2.26) 

in which 

B = 1 + & i 4  (2.27) 

RA [(uI + u ~ ) / u T ]  - (X -X,)"2{[(U1 + u ~ ) / u ? ]  - l}. (2.28) 

When (2.26) is compared to the scaling ansatz, (2.3), with the power W ( ~ - " ) / P ~ ,  one can 
see that a = &/lo is the specific-heat exponent of the X Y  model, whereas the scaling 
function F' carries the singularity in (x - x,) to the power 2 - aI, as x- xc, where 
aI = ~ / 6  is the specific-heat exponent for the Ising model. 

In the ordered phase, where heff = 0 but m(1) f 0 is given by (2.19), there is an exact 
cancellation of the m(Z)-dependent terms in the first part of (2.15). The singular part of 
the free-energy density that follows from the remaining part then takes the scaling form 

E 
x 1 + 2&AI({xi}) - -In Y({xi}) + -~ In - i 2 6 u ~ R A  2B 

(2.29) 

along the coexistence curve between phases I and 11. The result for F-(X)sing as well as 
that for F+(%)sing is valid very close to the critical point. Note that the scaling function 
F- in the scaling ansatz (2.3) is different from F'. 

Since u1 + u2 is the effective quartic coupling ueff of the one-component Ising model 
that is left when the transverse component q2  is integrated out (Blankschtein and 
Aharony 1980), one may take u1 + u2 = U; to be the Ising-model fixed point. The ratio 
of the free-energy densities. above and below the critical point, takes then the universal 
form 

(2.30) 

for the Ising model (Rudnick and Nelson 1976), independently of the symmetry-breaking 
parameters {xi} and consistent with the results of Domany et a1 (1977), due to the neglect 
of the singular XY-model behaviour in (2.11). 

A scaling form for the discontinuity in the magnetisation across the first-order phase 
boundary can also be obtained from (2.19), in the form 

F ; ~ ~ / F ; ~ ~  = i(1 + $ E  In 2) 

E 
A ( { x i } )  - - In Y ({xi}) + - ~ 

4 
(2.31) 

with a singularity as w+ 0 that involves the exponent p for the XY-model, and a 
singularity as the Potts-model critical point is approached with the exponent /3 = f 
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(1 - 4 ~ )  for the Ising model. The dependence on wplqw is in accordance with (2.3) and 
the scaling relation (Y + /3 + A = 2. 

One may go ahead and consider the longitudinal susceptibility in zero-effective field 
that satisfies the relationship (Wilson and Kogut 1974) 

x ( X )  = e2'X(X(l)). (2.32) 

Explicit calculation yields 

x ( X )  = e2[T;l(Z)[l -6(ul + u 2 )  In Tl(Z) -9(I$f(Z)/Tl(l))(l+ln Tl(f)) 

- W%W1 ( Z > ) I  (2.33) 

to one-loop order. The inverse susceptibility above the critical point, 
( % + ) - I  = ~ 2 + & / 5 ( x  - xC)l+&/6BR-1/3 A 

E 
[1+&Al({X,)) - 6  [ ( u l  +U2) /UI*RAI  ln(w({xi>>/B)l (2.34) 

thatfollowsfrom (2.33) carries theXY-modelsingularityintheform w y l q w ,  inaccordance 
with the scaling ansatz (2.3), and the singularity in (x - x,) -+ 0 with the Ising-model 
exponent y = 1 + ~ / 6 .  Similarly, on the coexistence curve below the critical point we 
find 

(. - x,) 1+&/6 BR -1 i3  
( X - ) - l  = 2,,,2+~/5 A 

(2.35) E ~ 1 +  u2 " ( { x i } ) )  1 + EAl({xi}) + 4u(5 + 4x4 - Axxs) - -7 In ~ 

6 U I  RA 2B 

Taking the isotropic XY-model quartic coupling U at its fixed-point value U" = ~ / 4 0 ,  
and again u1 + u2 = U ;  , we find the universal ratio of inverse susceptibilities, above and 
below the critical point 

(2.36) 

When the symmetry-breaking parameters are taken as x4 = x5 = 0 one recovers the 
universal ratio for the Ising model (Rudnick and Nelson 1976), as one would expect, 
consistent with Domany et al(1977). 

(x+>-' / (x-)- '  = 2[1 - h ~ ( 5  + 4x4 - $x5) - QE In 21. 

3. Coexistence surface and application to strontium titanate 

We consider first the effect of fluctuations on the coexistence surface between phases I 
and I1 for the three-state Potts model and, for simplicity, we restrict the results to linear 
and quadratic symmetry-breaking perturbations. The solution of heff = 0 for teff < 0 
yields a first-order coexistence surface given by 

H1 = &[2-9(G+R)]  - &(5-9G)1n4[9(R-G)+7]w2/u (3.1) 

(3.2) 

to one-loop order, in terms of the dimensionless parameters 
H =I& - 2 , h l ~ 2 / ~ 3  R = $ru/w2 G = $gu/w2. 

The zero-loop order term has been obtained before (Blankschtein and Aharony 1980), 
and it yields a straight line in the (R ,  H I )  plane. Note that the one-loop order correction 



Equations of state for the three-state Potts model 6067 

Figure 2. The coexistence surface between phases I and I1 (cf figure 1) for the three-state 
Potts model with fluctuation corrections (left curve) on the mean-field result. 

becomes dimensional through the dependence on w2/u and the new curved coexistence 
surface is shown in figure 2. 

We consider next the trigonal-to-pseudotetragonal phase transition in SrTiO, that 
may be described by the effective Hamiltonian of (1.1) if we continue to neglect here 
trilinear and quartic symmetry-breaking terms. The couplings r ,  g,  w ,  U and hl  in there 
can be related to known parameters for SrTi03, as discussed by Blankschtein and 
Aharony (1981). Equation (3.1) may then be used to provide an explicit expression for 
the coexistence surface in terms ofp, Tand the off-diagonal stress parameter 6 through 
the relationships 

HI = - 6 . 2 4 ~  1016p6/f(K,p) R = (1.45 K+2.3X 1016p)/f(K,p) 
(3.3) 

G = -5.35 x 1 0 1 6 p ~ / f ( ~ , p )  W2/u = o . 6 ~  10-*9f(~ ,p)  

in which 

f(K,p) = 1.32 x 101’p - K (3.4) 

where K is a temperature-dependent parameter. Although this dependence does not 
appear explicitly in the literature, an estimate can be inferred as follows. 

The ‘high’-temperature pseudocubic phase in SrTi03 under diagonal stress can be 
described by an effective Hamiltonian with a three-component order parameter cp = 
(cpo, cp 1, q2)  that has a quadratic part (Aharony et aZl977) 

plus isotropic quartic and cubic terms in the field components which do not depend on 
pressure and temperature. Here, 

ro = K + 3b,p (3.6) 

where b, (<O) is temperature independent. Neglecting fluctuations, i.e., in the Landau 
theory, the pseudocubic-to-trigonal phase boundary is given by ro = 0. From the fit of 
the experimental phase boundary (Muller et a1 1970) to a straight line it follows then that 
K 3.14 x ( T  - Tb),  in which Tb is the bicritical temperature (figure 3). Since the 
quartic and cubic terms in the Hamiltonian do not depend on pressure and temperature , it 
is reasonable to expect that this relationship remains basically unchanged by fluctuations. 
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Figure 3. Pressure-temperature phase diagram for SrTiO, under diagonal (6 = 0) stress. 
The first-order trigonal-to-pseudotetragonal phase boundary is shown in mean-field theory 
(A) and with fluctuation corrections to one-loop order (C), compared to the experimental 
curve (B) (Muller era1 1970). 

T ( K )  

Figure 4. Trigonal-to-pseudotetragonal phase boundary for SrTi03 under off-diagonal (6 = 
0.005) stress, in mean-field theory (A) and with fluctuation corrections to one-loop order 
(B). 

Equations (3.1), (3.3) and (3.4) yield then, for the first order trigonal-to-pseudo- 
tetragonal phase boundary, not too close to the bicritical point, 

p = [2.317/(1 - l0.5986)]1O7(Tb - T ) l - a E  

x [I - U E  1n{10-6[(4.65 + 46.916/(1- 10.5986)]}] (3.7) 
a = (0.145 - 2.356)/(1 - 10.5986) 

The results for 6 = 0 and 6 = 0.005 are shown in figures 3 and 4.  Although there is a 
considerable improvement of the one-loop order result for T 2 40 K, as can be seen 
from the rather good agreement with experiment in that region, we do not obtain the 
flattening of the experimental curve at lower T.  It is possible that higher-loop order 
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corrections may account for this. Since the off-diagonal stress parameter at the critical 
point is 6, = 0.008 (Blankschtein and Aharony 1981), there is only a small range of 6 
where the effects of the symmetry-breaking perturbations take place. They are therefore 
hardly observable, as far as the phase boundary is concerned, except at low T ,  in view 
of the weak dependence of our results on 6. 

4. Summary and concluding remarks 

We have obtained explicit scaling forms for the singular part of the free energy and for 
the longitudinal susceptibility of the three-state Potts model with symmetry-breaking 
perturbations, both above and below the critical point in non-zero external field, to one- 
loop order in 4 - E dimensions. These scaling forms exhibit Ising singularities and they 
have a specific dependence on the Potts-model couplings and on the symmetry-breaking 
terms through appropriate scaling variables. However, as one would expect, both the 
ratios of the free energy and of the susceptibility above and below the critical point turn 
out to be universal. We have also obtained a scaling form for the order-parameter 
discontinuity along the first-order phase boundary. 

Our results are restricted to the critical region of the phase boundary 1-11. The reason 
for this is calculational limitations. Indeed, the renormalisation-group results discussed 
in I apply only to the phase transition 1-11 and to the continuous part of the phase 
transition 1-111, i.e. , to the second-order phase boundary and to the tricritical point. 
The field component q2 now orders discontinuously along the first-order part of the 
phase boundary, requiring the derivation of new RG equations. Although this is feasible, 
the difficulty that one has to meet is that this phase boundary can only be determined 
numerically, as can already be seen in the Landau theory (Blankschtein and Aharony 
1980). Thus, it does not seem possible to obtain scaling forms below the tricritical point. 

We have also shown that the results for the critical region of the three-state Potts 
model can be applied to the trigonal-to-pseudotetragonal phase transition in SrTi03 
with an off-diagonal 6 (positive) stress parameter. We found that the one-loop order 
fluctuation corrections to the mean-field phase boundary go in the correct direction over 
most of the temperature interval to explain the experimental results assumed to be 
performed for 6 = 0. The small change of our results with 6 suggests that even for non- 
zero 6 the one-loop order fluctuation corrections should be quite satisfactory. 

By adapting the Potts-model calculations with symmetry-breaking perturbations to 
the trigonal-to-pseudotetragonal phase transition in SrTi03, as discussed in I ,  one can 
also predict the jump in the order parameter across the first-order phase boundary, as 
an application of (2.31). We omit this here since the critical region in SrTi03, to which 
such a prediction would be restricted, has not yet been determined. 

Finally, we point out that the magnetic transition in cubic ferromagnets in an off- 
diagonal magnetic field is a further realisation of the three-state Potts model with 
symmetry-breaking perturbations (Barbosa and Theumann 1988b). 

Acknowledgments 

The present work, which is part of a doctoral thesis (MCB) has been partially supported 
by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Finan- 
ciadora de Estudos e Projetos (FINEP), Brazil. 



M C Barbosa and W K Theumann 

References 

Aharony A 1976 Phase Transitions and Critical Phenomena vol6, ed. C Domb and M S Green (New York: 

Aharony A, Muller K A and Berlinger W 1977 Phys. Rev. Lett. 38 33 
Alexander S 1975 Phys. Lett. 54A 353 
Amit D J 1984 Field Theory, the Renormalization Croup and Critical Phenomena (Singapore: World Scientific) 
Barbosa M C and Theumann W K 1988a Phys. Rev. B 38 9160 
- 1988b unpublished 
Blankschtein D and Aharony A 1980 J .  Phys. C: Solid State Phys. 13 4635 
- 1981 J .  Phys. C: Solid State Phys. 14 1919 
Brtzin E, Le Guillou J C and Zinn-Justin J 1976 Phase Transitions and Critical Phenomena vol6, ed. C Domb 

and M S Green (New York: Academic) p 127 
Brtzin E, Wallace D J and Wilson K G 1973 Phys. Rev. B 7 232 
Bruce A D and Aharony A 1975 Phys. Rev. B 11 478 
Domany E, Nelson D Rand Fisher M E 1977 Phys. Rev. B 15 3493 
Domany E and Riedel E K 1978 J .  Appl. Phys. 49 1315 
Domb C and Hunter D L 1965 Proc. R .  Soc. A 268 506 
Fisher M E 1967 Rep. Prog. Phys. 30 615 
- 1974 Rev. Mod. Phys. 46 597 
Fisher M E and Jasnow D 1980 Phase Transitions and Critical Phenomena vol4, ed. C Domb and M S Green 

Fontanari J F and Theumann W K 1986 Phys. Rev. B 33 3530 
Hubbard J 1959 Phys. Rev. Lett. 3 77 
Mukamel D, Fisher M E and Domany E 1976 Phys. Rev. Lett. 37 365 
Muller K A, Berlinger W and Slonczewski J C 1970 Phys. Rev. Lett. 25 734 
Nelson D R 1975 Phys. Rev. B 11 3504 
Nelson D Rand Domany E 1976 Phys. Rev. Lett. 35 178 
Niemeijer Th and van Leeuwen J M J 1976 Phase Transitions and Critical Phenomena vol6, ed. C Domb and 

M S Green (New York: Academic) p 425 
Potts R B 1952 Proc. Camb. Phil. Soc. 48 106 
Rudnick J 1975 J .  Phys. A :  Math. Gen. 8 1125 
Rudnick J and Nelson D R 1976 Phys. Rev. B 13 2208 
Straley J P and Fisher M E 1973 J .  Phys. A: Math. Nucl. Gen. 6 1310 
Stratonovich R L 1957 Dokl. Akad. Nauk 115 1097 (Engl. Transl. 1957 Sou. Phys.-Dokl. 2 416) 
Widom B 1965 J .  Chem. Phys. 43 3898 
Wilson K G 1972 Phys. Rev. Lett. 28 548 
Wilson K G and Kogut J 1974 Phys. Rep. 12 76 
Wu F Y 1982 Rev. Mod. Phys. 54 235 

Academic) p 357 

(New York: Academic) in preparation 


